Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.225
Filtrar
1.
Protein Sci ; 33(6): e5010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723172

RESUMEN

Recent studies have demonstrated that one can control the packing density, and in turn the filterability, of protein precipitates by changing the pH and buffer composition of the precipitating solution to increase the structure/order within the precipitate. The objective of this study was to examine the effect of sodium malonate, which is known to enhance protein crystallizability, on the morphology of immunoglobulin precipitates formed using a combination of ZnCl2 and polyethylene glycol. The addition of sodium malonate significantly stabilized the precipitate particles as shown by an increase in melting temperature, as determined by differential scanning calorimetry, and an increase in the enthalpy of interaction, as determined by isothermal titration calorimetry. The sodium malonate also increased the selectivity of the precipitation, significantly reducing the coprecipitation of DNA from a clarified cell culture fluid. The resulting precipitate had a greater packing density and improved filterability, enabling continuous tangential flow filtration with minimal membrane fouling relative to precipitates formed under otherwise identical conditions but in the absence of sodium malonate. These results provide important insights into strategies for controlling precipitate morphology to enhance the performance of precipitation-filtration processes for the purification of therapeutic proteins.


Asunto(s)
Malonatos , Malonatos/química , Filtración , Precipitación Química , Inmunoglobulinas/química , Polietilenglicoles/química , Cloruros/química , Rastreo Diferencial de Calorimetría , Malatos/química , Compuestos de Zinc
2.
J Hazard Mater ; 471: 134314, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640668

RESUMEN

Inorganic coagulants could effectively precipitate algae cells but might increase the potential risks of cell damage and coagulant residue. This study was conducted to critically investigate the suitability of polyaluminum (PAC), FeCl3 and TiCl4 for algae-laden water treatment in terms of the trade-off between algal substance removal, cell viability, and coagulant residue. The results showed that an appropriate increase in coagulant dosage contributed to better coagulation performance but severe cell damage and a higher risk of intracellular organic matter (IOM) release. TiCl4 was the most destructive, resulting in 60.85% of the algal cells presenting membrane damage after coagulation. Intense hydrolysis reaction of Ti salts was favorable for the formation of larger and more elongated, dendritic structured flocs than Al and Fe coagulants. TiCl4 exhibited the lowest residue level and remained in the effluents mainly in colloidal form. The study also identified charge neutralization, chemisorption, enmeshment, and complexation as the dominant mechanisms for algae water coagulation by metal coagulants. Overall, this study provides the trade-off analyses between maximizing algae substance removal and minimizing potential damage to cell integrity and is practically valuable to develop the most suitable and feasible technique for algae-laden water treatment.


Asunto(s)
Hidróxido de Aluminio , Supervivencia Celular , Compuestos Férricos , Floculación , Titanio , Purificación del Agua , Purificación del Agua/métodos , Hidróxido de Aluminio/química , Supervivencia Celular/efectos de los fármacos , Floculación/efectos de los fármacos , Compuestos Férricos/química , Titanio/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Cloruros/química
3.
Chemosphere ; 357: 141864, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588901

RESUMEN

Sustainable, efficient, and environmentally friendly ways to tailor the carbonaceous materials from bio sources with desired functionalities remain a challenge around the world. In this study, we represent a novel approach to synthesize carbon hybrid material based on Zinc Oxide/carbon (ZnO/C) hybrid systems by catalytic hydrothermal process via crosslinking reaction through nucleation and growth of ZnO particles at the functional groups of oxidized carbon material. This research explored the volarization of Condensed Corn Distillers Soluble (CDS) as a carbon precursor to synthesize biobased carbon spheres. Surface modification of the produced carbon spheres took place using zinc chloride (ZnCl2) during hydrothermal carbonization (HTC). Zinc chloride (ZnCl2) was used to function as a catalyst during HTC and functioned as a ZnO source to synthesize (ZnO/C) hybrid systems. Design Expert software v13 was used to design the hydrothermal carbonization (HTC) experiments and response surface methodology was used to find the optimized conditions for the preparation of carbon hybrid systems. The hydrothermal synthesis process introduced 3D stone like zinc oxide particles onto the carbon matrix. These particles were self-assembled onto the carbon framework to produce carbon hybrid systems with unique physical, chemical, structural and functional properties. Herein, the obtained carbon hybrid systems (ZnO/C) were investigated and discussed in detail. ZnO/C hybrid systems were analyzed for surface morphology using scanning electron microscopy (SEM) that presented a 3D spherical interconnected phase and XRD analyses were used for phase crystallinity that showed new crystalline phases such as hopeite and zincite after the ZnCl2 incorporation. Surface functional groups were also analyzed by FTIR and results confirmed the presence of hydrophilic groups such as -OH, CC, and COOH on the surface of ZnO/C hybrid carbon systems. This study provided the insightful guidance for tailoring novel design of multifunctional carbon material as an adsorbent/catalyst for various applications of sustainable remediation.


Asunto(s)
Carbono , Restauración y Remediación Ambiental , Zea mays , Óxido de Zinc , Óxido de Zinc/química , Zea mays/química , Carbono/química , Catálisis , Restauración y Remediación Ambiental/métodos , Compuestos de Zinc/química , Propiedades de Superficie , Cloruros/química
4.
Water Res ; 256: 121539, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583335

RESUMEN

Inorganic coagulants such as poly aluminum ferric chloride (Al/Fe) are applied conventionally to sewage sludge dewatering and can be retained in the sludge cake, causing its conductivity to increase and generate secondary pollution. To reduce these disadvantages, there is a need to develop alternative, more sustainable chemicals as substitutes for conventional inorganic coagulants. In the present investigation, the application of a polymeric chitosan quaternary ammonium salt (CQAS) is explored as a complete, or partial, replacement for Al/Fe in the context of sludge dewatering processes. Laboratory experiments using digested sewage sludge showed that CQAS could effectively substitute for over 80 % of the Al/Fe inorganic coagulant in the sludge dewatering process. This substitution resulted in a reduction of sludge cake conductivity by more than 50 %. Simulation of sludge dewatering curves and imaging of the sludge surface indicated that the addition of CQAS led to an increase in nanosized pores, and a decrease in the specific resistance of the sludge filter cake as the dosage of Al/Fe decreased to around 30 %. The variations of fluorescence emission, quantum yield and carboxylic and amino groups, suggested that the chelating of Al/Fe decreased due to the bridging effects of CQAS. The CQAS had different flocculation bridging effects on various EPS fractions, which varied the amount of protein chelated with Al/Fe in each fraction. This study provides new information about the benefits of replacing conventional inorganic coagulants with natural organic polymers for sewage sludge dewatering, in terms of reduced sludge cake conductivity and greater dry solids content.


Asunto(s)
Quitosano , Compuestos Férricos , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Quitosano/química , Compuestos Férricos/química , Compuestos de Amonio Cuaternario/química , Floculación , Cloruros/química , Eliminación de Residuos Líquidos/métodos , Aluminio/química
5.
Nat Chem ; 16(5): 682-683, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594367
6.
Bioresour Technol ; 400: 130666, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583673

RESUMEN

Applications of deep eutectic solvent (DES) systems to separate lignocellulosic components are of interest to develop environmentally friendly processes and achieve efficient utilization of biomass. To enhance the performance of a binary neutral DES (glycerol:guanidine hydrochloride), various Lewis acids (e.g., AlCl3·6H2O, FeCl3·6H2O, etc.) were introduced to synthesize a series of ternary DES systems; these were coupled with microwave heating and applied to moso bamboo. Among the ternary DES systems evaluated, the FeCl3-based DES effectively removed lignin (81.17%) and xylan (85.42%), significantly improving enzymatic digestibility of the residual glucan and xylan (90.15% and 99.51%, respectively). Furthermore, 50.74% of the lignin, with high purity and a well-preserved structure, was recovered. A recyclability experiment showed that the pretreatment performance of the FeCl3-based DES was still basically maintained after five cycles. Overall, the microwave-assisted ternary DES pretreatment approach proposed in this study appears to be a promising option for sustainable biorefinery operations.


Asunto(s)
Disolventes Eutécticos Profundos , Compuestos Férricos , Lignina , Microondas , Lignina/química , Hidrólisis , Disolventes Eutécticos Profundos/química , Cloruros/química , Celulasa/metabolismo , Celulasa/química , Glicerol/química , Solventes/química , Sasa/química , Poaceae/química
7.
J Biol Chem ; 300(4): 107210, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519030

RESUMEN

Flavin-dependent halogenases are central enzymes in the production of halogenated secondary metabolites in various organisms and they constitute highly promising biocatalysts for regioselective halogenation. The mechanism of these monooxygenases includes formation of hypohalous acid from a reaction of fully reduced flavin with oxygen and halide. The hypohalous acid then diffuses via a tunnel to the substrate-binding site for halogenation of tryptophan and other substrates. Oxidized flavin needs to be reduced for regeneration of the enzyme, which can be performed in vitro by a photoreduction with blue light. Here, we employed this photoreduction to study characteristic structural changes associated with the transition from oxidized to fully reduced flavin in PyrH from Streptomyces rugosporus as a model for tryptophan-5-halogenases. The effect of the presence of bromide and chloride or the absence of any halides on the UV-vis spectrum of the enzyme demonstrated a halide-dependent structure of the flavin-binding pocket. Light-induced FTIR difference spectroscopy was applied and the signals assigned by selective isotope labeling of the protein moiety. The identified structural changes in α-helix and ß-sheet elements were strongly dependent on the presence of bromide, chloride, the substrate tryptophan, and the product 5-chloro-tryptophan, respectively. We identified a clear allosteric coupling in solution at ambient conditions between cofactor-binding site and substrate-binding site that is active in both directions, despite their separation by a tunnel. We suggest that this coupling constitutes a fine-tuned mechanism for the promotion of the enzymatic reaction of flavin-dependent halogenases in dependence of halide and substrate availability.


Asunto(s)
Proteínas Bacterianas , Flavinas , Oxidorreductasas , Streptomyces , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Flavinas/metabolismo , Flavinas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Streptomyces/enzimología , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Halogenación , Bromuros/química , Bromuros/metabolismo , Triptófano/metabolismo , Triptófano/química , Sitios de Unión , Cloruros/metabolismo , Cloruros/química
8.
Environ Sci Pollut Res Int ; 31(19): 27935-27948, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38523212

RESUMEN

Herein, microwave-assisted activated carbon (MW-AC) was fabricated from peanut shells using a ZnCl2 activator and utilized for the first time to eliminate benzene vapor as a volatile organic compound (VOC). During the MW-AC production process, which involved two steps-microwave treatment and muffle furnace heating-we investigated the effects of various factors and achieved the highest iodine number of 1250 mg/g. This was achieved under optimal operating conditions, which included a 100% impregnation ratio, CO2 as the gas in the microwave environment, a microwave power set at 500 W, a microwave duration of 10 min, an activation temperature of 500 °C and an activation time of 45 min. The structural and morphological properties of the optimized MW-AC were assessed through SEM, FTIR, and BET analysis. The dynamic adsorption process of benzene on the optimized MW-AC adsorbent, which has a significant BET surface area of 1204.90 m2/g, was designed using the Box-Behnken approach within the response surface methodology. Under optimal experimental conditions, including a contact duration of 80 min, an inlet concentration of 18 ppm, and a temperature of 26 °C, the maximum adsorption capacity reached was 568.34 mg/g. The experimental data are better described by the pseudo-second-order kinetic model, while it is concluded that the equilibrium data are better described by the Langmuir isotherm model. MW-AC exhibited a reuse efficiency of 86.54% for benzene vapor after five consecutive recycling processes. The motivation of the study highlights the high adsorption capacity and superior reuse efficiency of MW-AC adsorbent with high BET surface area against benzene pollutant. According to our results, the developed MW-AC presents itself as a promising adsorbent candidate for the treatment of VOCs in various industrial applications.


Asunto(s)
Arachis , Benceno , Carbón Orgánico , Microondas , Compuestos de Zinc , Adsorción , Benceno/química , Carbón Orgánico/química , Compuestos de Zinc/química , Arachis/química , Compuestos Orgánicos Volátiles/química , Cloruros/química , Cinética , Contaminantes Atmosféricos/química
9.
J Phys Chem B ; 128(11): 2697-2706, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38447081

RESUMEN

CLCF fluoride/proton antiporters move fluoride ions out of bacterial cells, leading to fluoride resistance in these bacteria. However, many details about their operating mechanisms remain unclear. Here, we report a combined quantum-mechanical/molecular-mechanical (QM/MM) study of a CLCF homologue from Enterococci casseliflavus (Eca), in accord with the previously proposed windmill mechanism. Our multiscale modeling sheds light on two critical steps in the transport cycle: (i) the external gating residue E118 pushing a fluoride in the external binding site into the extracellular vestibule and (ii) an incoming fluoride reconquering the external binding site by forcing out E118. Both steps feature competitions for the external binding site between the negatively charged carboxylate of E118 and the fluoride. Remarkably, the displaced E118 by fluoride accepts a proton from the nearby R117, initiating the next transport cycle. We also demonstrate the importance of accurate quantum descriptions of fluoride solvation. Our results provide clues to the mysterious E318 residue near the central binding site, suggesting that the transport activities are unlikely to be disrupted by the glutamate interacting with a well-solvated fluoride at the central binding site. This differs significantly from the structurally similar CLC chloride/proton antiporters, where a fluoride trapped deep in the hydrophobic pore causes the transporter to be locked down. A free-energy barrier of 10-15 kcal/mol was estimated via umbrella sampling for a fluoride ion traveling through the pore to repopulate the external binding site.


Asunto(s)
Antiportadores , Protones , Antiportadores/química , Antiportadores/metabolismo , Fluoruros/química , Modelos Moleculares , Proteínas de Transporte de Membrana/metabolismo , Cloruros/química , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Transporte Iónico
10.
Environ Sci Technol ; 58(11): 5174-5185, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451543

RESUMEN

Nanofiltration (NF) has the potential to achieve precise ion-ion separation at the subnanometer scale, which is necessary for resource recovery and a circular water economy. Fabricating NF membranes for selective ion separation is highly desirable but represents a substantial technical challenge. Dipole-dipole interaction is a mechanism of intermolecular attractions between polar molecules with a dipole moment due to uneven charge distribution, but such an interaction has not been leveraged to tune membrane structure and selectivity. Herein, we propose a novel strategy to achieve tunable surface charge of polyamide membrane by introducing polar solvent with a large dipole moment during interfacial polymerization, in which the dipole-dipole interaction with acyl chloride groups of trimesoyl chloride (TMC) can successfully intervene in the amidation reaction to alter the density of surface carboxyl groups in the polyamide selective layer. As a result, the prepared positively charged (PEI-TMC)-NH2 and negatively charged (PEI-TMC)-COOH composite membranes, which show similarly high water permeance, demonstrate highly selective separations of cations and anions in engineering applications, respectively. Our findings, for the first time, confirm that solvent-induced dipole-dipole interactions are able to alter the charge type and density of polyamide membranes and achieve tunable surface charge for selective and efficient ion separation.


Asunto(s)
Cloruros , Nylons , Cloruros/química , Nylons/química , Membranas Artificiales , Solventes , Agua
11.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552695

RESUMEN

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Asunto(s)
Benzo(a)pireno , Carbón Orgánico , Lignina , Aceite de Sésamo , Sesamum , Carbón Orgánico/química , Lignina/química , Benzo(a)pireno/química , Adsorción , Aceite de Sésamo/química , Sesamum/química , Compuestos de Zinc/química , Cloruros/química
12.
Dalton Trans ; 53(11): 4984-5000, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38406993

RESUMEN

In this study, we present the synthesis, characterization and in vitro cytotoxicity of six organometallic [Ru(II)(η6-p-cymene)(N,N)Cl]Cl, [Rh(III)(η5-C5Me5)(N,N)Cl]Cl and [Re(I)(CO)3(N,N)Cl] complexes, in which the (N,N) ligands are sterane-based 2,2'-bipyridine derivatives (4-Me-bpy-St-OH, 4-Ph-bpy-St-OH). The solution chemical behavior of the ligands and the complexes was explored by UV-visible spectrophotometry and 1H NMR spectroscopy. The ligands and their Re(I) complexes are neutral at pH = 7.40; this contributes to their highly lipophilic character (log D7.40 > +3). The Ru(II) and Rh(III) half-sandwich complexes are much more hydrophilic, and this property is greatly affected by the actual chloride ion content of the medium. The half-sandwich Ru and Rh complexes are highly stable in 30% (v/v) DMSO/water (<5% dissociation at pH = 7.40); this is further increased in water. The Rh(III)(η5-C5Me5) complexes were characterized by higher water/chloride exchange and pKa constants compared to their Ru(II)(η6-p-cymene) counterparts. The Re(I)(CO)3 complexes are also stable in solution over a wide pH range (2-12) without the release of the bidentate ligand; only the chlorido co-ligand can be replaced with OH- at higher pH values. A comprehensive discussion of the binding affinity of the half-sandwich Ru(II) and Rh(III) complexes toward human serum albumin and calf-thymus DNA is also provided. The Ru(II)(η6-p-cymene) complexes interact with human serum albumin via intermolecular forces, while for the Rh(III)(η5-C5Me5) complexes the coordinative binding mode is suggested as well. They are also able to interact with calf-thymus DNA, most likely via the coordination of the guanine nitrogen. The Ru(II)(η6-p-cymene) complexes were found to be the most promising among the tested compounds as they exhibited moderate-to-strong cytotoxic activity (IC50 = 3-11 µM) in LNCaP as well as in PC3 prostate cells in an androgen receptor-independent manner. They were also significantly cytotoxic in breast and colon adenocarcinoma cancer cell lines and showed good selectivity for cancer cells.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias del Colon , Complejos de Coordinación , Cimenos , Compuestos Organometálicos , Rutenio , Humanos , Complejos de Coordinación/química , Línea Celular Tumoral , Ligandos , Cloruros/química , Antineoplásicos/química , ADN/química , Albúmina Sérica Humana , Agua , Rutenio/farmacología , Rutenio/química , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/química
13.
Environ Toxicol Chem ; 43(1): 105-114, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37818877

RESUMEN

While metals are present in mixture in the environment, metal toxicity studies are usually conducted on an individual metal basis. There is a paucity of data in the existing literature regarding specific metal-metal interactions and their effect on metal toxicity and bioavailability. We studied interactions of a silver (Ag)-copper (Cu) mixture at the intestinal epithelium using an intestinal cell line derived from rainbow trout (Oncorhynchus mykiss), the RTgutGC. Exposures were conducted in media containing different chloride concentrations (low chloride, 1 mM; high chloride, 146 mM), thus resulting in different metal speciation. Cytotoxicity was evaluated based on two endpoints, cell metabolic activity and cell membrane integrity. The Ag-Cu mixture toxicity was assessed using two designs: independent action and concentration addition. Metal mixture bioavailability was studied by exposing cells to 500 nM of Ag or Cu as a single metal or a mixture (i.e., 500 nM of Cu plus 500 nM of Ag). We found an antagonistic effect in the low-chloride medium and an additive/synergistic effect in the high-chloride medium. We found that Cu dominates over Ag toxicity and bioavailability, indicating a competitive inhibition when both metals are present as free metal ions in the exposure media, which supports our hypothesis. Our study also suggests different mechanisms of uptake of free metal ions and metal complexes. The study adds valuable information to our understanding of the role of metal speciation on metal mixture toxicity and bioavailability. Environ Toxicol Chem 2024;43:105-114. © 2023 SETAC.


Asunto(s)
Cobre , Oncorhynchus mykiss , Plata , Contaminantes Químicos del Agua , Animales , Cloruros/química , Cobre/toxicidad , Mucosa Intestinal/metabolismo , Oncorhynchus mykiss/metabolismo , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad
14.
Pesqui. bras. odontopediatria clín. integr ; 24: e220128, 2024. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-1535006

RESUMEN

ABSTRACT Objective: To assess the effects of cobalt chloride (CoCl2) as a hypoxia mimicking agent on human umbilical cord mesenchymal stem cells (hUCMSCs) expression of HIF-1α and mTOR for use in regenerative dentistry. Material and Methods: Human umbilical cord mesenchymal stem cells were isolated and then cultured. The characteristics of stemness were screened and confirmed by flow cytometry. The experiment was conducted on hypoxia (H) and normoxia (N) groups. Each group was divided and incubated into 24-, 48-, and 72-hours observations. Hypoxic treatment was performed using 100 µM CoCl2 on 5th passage cells in a conventional incubator (37°C; 5CO2). Then, immunofluorescence of HIF-1α and mTOR was done. Data was analyzed statistically using One-way ANOVA and Tukey's HSD. Results: Significant differences were found between normoxic and hypoxic groups on HIF-1α (p=0.015) and mTOR (p=0.000) expressions. The highest HIF-1α expression was found at 48 hours in the hypoxia group, while for mTOR at 24 hours in the hypoxia group. Conclusion: Hypoxia using cobalt chloride was able to increase human umbilical cord mesenchymal stem cells expression of HIF-1α and mTOR.


Asunto(s)
Humanos , Cordón Umbilical/citología , Cloruros/química , Cobalto/química , Células Madre Mesenquimatosas/citología , Hipoxia/patología , Análisis de Varianza , Citometría de Flujo
15.
Water Res ; 250: 121078, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159540

RESUMEN

Disinfection is vital in ensuring water safety. However, the traditional chlorine disinfection process is prone to producing toxic and harmful disinfection by-products (DBPs). The combination of quaternary ammonium polymer and the chlorine disinfection process can solve this shortcoming. Currently, research on the control of DBPs through the combined process is not systematic and the control effect between reducing the dosage of disinfectants and DBPs remains to be studied. Quaternized cyclodextrin polymers have attracted increasing attention due to their excellent adsorption and antibacterial properties, but their synergistic effect with chlorine disinfection is still unclear. In this study, a magnetic quaternized cyclodextrin polymer (MQCDP) is synthesized in an ionic liquid green system, and a combined process of MQCDP treatment and chlorine disinfection is established. The disinfection performance of the combined process on the actual water body along with its reducing effect on the amount of chlorine disinfectant as well as the trihalomethanes (THMs) and haloacetic acids (HAAs) DBPs are explored. MQCDP has a porous structure with a specific surface area of 825 m2 g-1 and is easily magnetically separated. MQCDP can remove most of the natural organic matter (UV254 absorbance decreased by 97 %) in the water at the dosage of 1 g L-1 and kill bacteria with a sterilization rate of 85 %. Compared with disinfection using chlorine alone, the combined process has higher disinfection efficiency and significantly reduces the amount of disinfectant used. A concentration of 5 mg/L of NaClO was needed to meet the standard by chlorine disinfectant alone, while only 2 mg/L of NaClO can meet the standard for the combined process, indicating 60 % of the chlorine demand was reduced. More importantly, the combined process can significantly reduce the generation potential of DBPs. When 10 mg/L of NaClO is added, the THMs and HAAs generated by the combined process decreased by 65 % and 34 %, respectively, compared with the levels produced by single chlorine disinfection. The combined process can reduce the dosage of chlorine disinfectant and MQCDP can adsorb humic acid DBP precursors in raw water, thus lowering the generation of DBPs during disinfection. In summary, MQCDP has excellent separation and antibacterial ability, and its synergistic effects combined with the chlorine disinfection process are of great significance for controlling the amount of disinfectant and the formation potential of DBPs, which has potential applications in actual water treatment.


Asunto(s)
Celulosa , Ciclodextrinas , Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Cloro/química , Desinfectantes/química , Cloruros/química , Halogenación , Trihalometanos/química , Antibacterianos/farmacología , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
16.
Org Biomol Chem ; 22(1): 114-119, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38050426

RESUMEN

A molecular switch was developed to recognize and transport Cl- across lipid bilayers. The XRD-crystal structure and NOESY NMR spectra of a potent 4-aminoquinazoline analogue confirmed Cl--induced conformation changes. Systematic biophysical studies revealed that the quinazoline moiety forms cooperative interactions of H+ and Cl- ions with the thiourea moiety, resulting in the transport of H+/Cl- across the membranes. A pH-dependent analysis revealed that the transport of Cl- by the potent compound increased in an acidic environment. The potent compound could also transport H+/Cl- across Gram-positive bacteria, leading to antibacterial activities.


Asunto(s)
Cloruros , Membrana Dobles de Lípidos , Cloruros/química , Transporte Iónico , Membrana Dobles de Lípidos/química , Halógenos , Antibacterianos/farmacología , Poder Psicológico
17.
Eur Phys J E Soft Matter ; 46(12): 119, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051398

RESUMEN

It is well established that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) exhibit a reentrant condensation (RC) phase behavior in the presence of the trivalent hexamine cobalt(III) cations (Hac) which can be important for their packing and folding. A similar behavior can be observed for negatively charged globular proteins in the presence of trivalent metal cations, such as Y3+ or La3+. This phase behavior is mainly driven by charge inversion upon an increasing salt concentration for a fixed protein concentration (cp). However, as Hac exhibits structural differences compared to other multivalent metal cations, with six ammonia ligands (NH3) covalently bonded to the central cobalt atom, it is not clear that Hac can induce a similar phase behavior for proteins. In this work, we systematically investigate whether negatively charged globular proteins ß-lactoglobulin (BLG), bovine serum albumin (BSA), human serum albumin (HSA) and ovalbumin (OVA) feature Hac-induced RC. Effective protein-protein interactions were investigated by small-angle X-ray scattering. The reduced second virial coefficient (B2/B2HS) was obtained as a function of salt concentration. The virial coefficient analysis performed confirms the reentrant interaction (RI) behavior for BLG without actually inducing RC, given the insufficient strengths of the interactions for the latter to occur. In contrast, the strength of attraction for BSA, HSA and OVA are too weak to show RC. Model free analysis of the inverse intensity [Formula: see text] also supports this finding. Looking at different q-range by employing static (SLS) and dynamic light scattering experiments, the presence of RI behavior can be confirmed. The results are further discussed in view of metal cation binding sites in nucleic acids (DNA and RNA), where Hac induced RC phase behavior.


Asunto(s)
Cloruros , Cobalto , Humanos , Cloruros/química , Metenamina , Albúmina Sérica Bovina/química , Cationes/química , ADN , ARN , Soluciones/química
18.
Inorg Chem ; 62(44): 18322-18330, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37885054

RESUMEN

Chlorite dismutase (Cld) is a crucial enzyme that catalyzes the decomposition of chlorite ions into chloride ions (Cl-) and molecular oxygen (O2). Despite playing an important role in the detoxification of toxic chlorite ions, the mechanism of cleavage of the Cl-O bond by Cld remains highly debatable. The present study highlights the mechanism of such Cl-O bond cleavage in Cld using sophisticated computational tools such as hybrid quantum mechanical/molecular mechanical calculations and long-time scale molecular dynamics simulations. Here, we show that Cld forms a high spin ferric hexacoordinated substrate adduct in the presence of a chlorite ion, which subsequently reduces to a ferrous state. Our study shows a stepwise pathway with the homolytic cleavage of the Cl-O bond that produces a high spin Fe(III)-OH species and a diradicaloid species formed by the combination of a chlorine-based ClO• radical and a protein-based tyrosine118• radical. The findings provide significant insights into Cl-O bond cleavage and O2 formation which shows a crucial role of the tyrosine118 during the electron transfer process.


Asunto(s)
Cloruros , Hemo , Cloruros/química , Hemo/química , Compuestos Férricos , Electrones , Oxígeno/química
19.
PLoS One ; 18(8): e0289534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37561805

RESUMEN

With the spread of coronavirus infections, the demand for disinfectants, such as a sodium chlorite solution, has increased worldwide. Sodium chlorite solution is a food additive and is used in a wide range of applications. There is evidence that chlorous acid or sodium chlorite is effective against various bacteria, but the actual mechanism is not well understood. One reason for this is that the composition of chlorine-based compounds contained in sodium chlorite solutions has not been clearly elucidated. The composition can vary greatly with pH. In addition, the conventional iodometric titration method, the N,N-diethyl-p-phenylenediamine sulfate (DPD) method and the absorption photometric method cannot clarify the composition. In this study, we attempted to elucidate the composition of a sodium chlorite solution using absorption spectrophotometry and ion chromatography (IC). IC is excellent for qualitative and quantitative analysis of trace ions. Through this, we aimed to develop an evaluation method that allows anyone to easily determine the bactericidal power of sodium chlorite. We found that commercially available sodium chlorite solution is 80% pure, with the remaining 20% potentially containing sodium hypochlorite solution. In addition, when sodium chlorite solution became acidified, its absorption spectrum exhibited a peak at 365 nm. Sodium chlorite solution is normally alkaline, and it cannot be measured by the DPD method, which is only applicable under acidic conditions. The presence of a peak at 365 nm indicates that the acidic sodium chlorite solution contains species with oxidizing power. On the other hand, the IC analysis showed a gradual decrease in chlorite ions in the acidic sodium chlorite solution. These results indicate that chlorite ions may not react with this DPD reagent, and other oxidizing species may be present in the acidic sodium chlorite solution. In summary, when a sodium chlorite solution becomes acidic, chlorine-based oxidizing species produce an absorption peak at 365 nm. Sodium hypochlorite and sodium chlorite solutions have completely different IC peak profiles. Although there are still many problems to be solved, we believe that the use of IC will facilitate the elucidation of the composition of sodium chlorite solution and its sterilization mechanism.


Asunto(s)
Compuestos de Cloro , Hipoclorito de Sodio , Cloro , Cloruros/química , Cromatografía
20.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511075

RESUMEN

Our research area is related to the spiropyrazolinium-containingcompounds, which are insufficiently studied compared with pyrazoline-containing compounds. Nitrogen-containing azoniaspiromolecules have also been well studied. In drug design and other areas, they are a priori important structures, since rigid spirocyclic scaffolds with the reduced conformational entropy are able to organize a closely spaced area. Azoniaspirostructures are currently of wide practical interest as ionic liquids, current sources (membranes), structure-directing agents in organocatalysis, and in the synthesis of ordered ceramics. Our goal was the synthesis of 2-aminospiropyrazolilammonium chlorides and hexafluorophosphates. Our methodology is based on the tosylation of ß-aminopropioamidoximes with six-membered N-heterocycles (piperidine, morpholine, thiomorpholine, and phenylpiperazine) at the ß-position. 2-Aminospiropyrazolilammonium chlorides and hexafluorophosphates were obtained by the reaction of double ion substitution in the reaction of toluenesulfonates of 2-aminospiropyrazolinium compounds with an ethereal solution of HCl in ethanol and with ammonium hexafluorophosphate in ethanol in quantitative yields of 55-97%. The physicochemical characteristics of the synthesized compounds and their IR and NMR spectra are presented. The obtained salts were additionally characterized by the single-crystal XRD analysis. The presence of both axial and equatorial conformations of spirocations in solids was confirmed. 2-Aminospiropyrazolilammonium chlorides and hexafluorophosphates have weak in vitro antimicrobial activity on Gram-positive and Gram-negative bacterial lines.


Asunto(s)
Cloruros , Etanol , Ciclización , Cloruros/química , Intercambio Iónico , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA